Extensions 1→N→G→Q→1 with N=C22 and Q=C23

Direct product G=N×Q with N=C22 and Q=C23
dρLabelID
C23×C22176C2^3xC22176,42

Semidirect products G=N:Q with N=C22 and Q=C23
extensionφ:Q→Aut NdρLabelID
C22⋊C23 = C23×D11φ: C23/C22C2 ⊆ Aut C2288C22:C2^3176,41

Non-split extensions G=N.Q with N=C22 and Q=C23
extensionφ:Q→Aut NdρLabelID
C22.1C23 = C2×Dic22φ: C23/C22C2 ⊆ Aut C22176C22.1C2^3176,27
C22.2C23 = C2×C4×D11φ: C23/C22C2 ⊆ Aut C2288C22.2C2^3176,28
C22.3C23 = C2×D44φ: C23/C22C2 ⊆ Aut C2288C22.3C2^3176,29
C22.4C23 = D445C2φ: C23/C22C2 ⊆ Aut C22882C22.4C2^3176,30
C22.5C23 = D4×D11φ: C23/C22C2 ⊆ Aut C22444+C22.5C2^3176,31
C22.6C23 = D42D11φ: C23/C22C2 ⊆ Aut C22884-C22.6C2^3176,32
C22.7C23 = Q8×D11φ: C23/C22C2 ⊆ Aut C22884-C22.7C2^3176,33
C22.8C23 = D44⋊C2φ: C23/C22C2 ⊆ Aut C22884+C22.8C2^3176,34
C22.9C23 = C22×Dic11φ: C23/C22C2 ⊆ Aut C22176C22.9C2^3176,35
C22.10C23 = C2×C11⋊D4φ: C23/C22C2 ⊆ Aut C2288C22.10C2^3176,36
C22.11C23 = D4×C22central extension (φ=1)88C22.11C2^3176,38
C22.12C23 = Q8×C22central extension (φ=1)176C22.12C2^3176,39
C22.13C23 = C11×C4○D4central extension (φ=1)882C22.13C2^3176,40

׿
×
𝔽